Sustainable manufacturing with synthetic biology

Sustainable manufacturing with synthetic biology

Producing commodity chemicals in bacteria that live on industrial air pollution captures more greenhouse gases than it emits.

Synthetic biology promises to lead the way to a sustainable manufacturing sector. If the thousands of chemicals derived from petroleum and natural gas — including fuels, plastics and industrial chemicals — could be produced instead with microbes, the annual savings in global greenhouse gas emissions would be substantial. Most manufacturing processes developed by synthetic biology approaches have not been fully carbon neutral, in part because they rely on sugar feedstocks. An important new study in Nature Biotechnology by Liew et al.1 describes a strategy for carbon-negative manufacturing of chemicals at large scale by harnessing a class of autotrophic bacteria called acetogens. These bacteria can live on one-carbon molecules — including the greenhouse gas CO2 — and convert them into more-complex, organic molecules. But acetogens have proved extremely difficult to genetically engineer for the synthesis of non-native products. Liew et al. describe methods to overcome previous technical hurdles, achieving carbon-negative production of the non-native chemicals acetone and isopropanol (IPA) at industrially relevant efficiency, selectivity and scale. The study provides a roadmap for broadening the range of molecules that can be manufactured sustainably from waste and biomass feedstocks.

This is a preview of subscription content

Access options

Subscribe to Journal

Get full journal access for 1 year

100,85 €

only 8,40 € per issue

Tax calculation will be finalised during checkout.

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Synthetic biology promotes a circular carbon economy.

References

  1. Liew, F. E. et al. Nat. Biotechnol. https://doi.org/s41587-021-01195-w (2022).

  2. Jullesson, D., David, F., Pfleger, B. & Nielsen, J. Biotechnol. Adv. 33, 1395–1402 (2015).

    CAS 
    Article 

    Google Scholar
     

  3. Hermann, B. G., Blok, K. & Patel, M. K. Environ. Sci. Technol. 41, 7915–7921 (2007).

    CAS 
    Article 

    Google Scholar
     

  4. Yang, M., Baral, N. R., Anastasopoulou, A., Breunig, H. M. & Scown, C. D. Environ. Sci. Technol. 54, 12810–12819 (2020).

    CAS 
    Article 

    Google Scholar
     

  5. Schuchmann, K. & Müller, V. Nat. Rev. Microbiol. 12, 809–821 (2014).

    CAS 
    Article 

    Google Scholar
     

  6. Heffernan, J. K. et al. Front. Bioeng. Biotechnol. 8, 204 (2020).

    Article 

    Google Scholar
     

  7. Hoffmeister, S. et al. Metab. Eng. 36, 37–47 (2016).

    CAS 
    Article 

    Google Scholar
     

  8. Wu, M., Wang, M., Liu, J. & Huo, H. Biotechnol. Prog. 24, 1204–1214 (2008).

    CAS 
    Article 

    Google Scholar
     

  9. Wernet, G. et al. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article 

    Google Scholar
     

  10. Marcellin, E. et al. Green Chem. 18, 3020–3028 (2016).

    CAS 
    Article 

    Google Scholar
     

  11. Karim, A. S. et al. Nat. Chem. Biol. 16, 912–919 (2020).

    CAS 
    Article 

    Google Scholar
     

  12. Takors, R. et al. Microb. Biotechnol. 11, 606–625 (2018).

    CAS 
    Article 

    Google Scholar
     

  13. Collis, J., Strunge, T., Steubing, B., Zimmermann, A. & Schomäcker, R. Front. Energy Res. 9, 642162 (2021).

  14. National Academies of Sciences, Engineering, and Medicine. Gaseous Carbon Waste Streams Utilization: Status and Research Needs https://doi.org/10.17226/25232 (National Academies Press, 2019).

  15. Katsyv, A. & Müller, V. Front. Bioeng. Biotechnol. 8, 621166 (2020).

    Article 

    Google Scholar
     

  16. Baral, N. R. et al. ACS Sustain. Chem.& Eng. 7, 9062–9079 (2019).

    CAS 
    Article 

    Google Scholar
     

  17. Carbonell, P. et al. Commun. Biol. 1, 66 (2018).

    Article 

    Google Scholar
     

  18. IEA. Chemicals (International Energy Agency, 2021).

Download references

Author information

Affiliations

  1. Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Corinne D. Scown & Jay D. Keasling

  2. Life-Cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Emeryville, CA, USA

    Corinne D. Scown

  3. Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Corinne D. Scown

  4. Energy & Biosciences Institute, University of California, Berkeley, CA, USA

    Corinne D. Scown

  5. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA

    Jay D. Keasling

  6. The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark

    Jay D. Keasling

  7. Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China

    Jay D. Keasling

  8. Biofuels and Bioproducts Division, Joint BioEnergy Institute, Emeryville, CA, USA

    Jay D. Keasling

Corresponding authors

Correspondence to
Corinne D. Scown or Jay D. Keasling.

Ethics declarations

Competing interests

The authors declare no competing interests.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scown, C.D., Keasling, J.D. Sustainable manufacturing with synthetic biology.
Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01248-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41587-022-01248-8

Read More

[an error occurred while processing the directive]